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Abstract

A posteriori error estimates are derived for the finite element method

presented in Part I. These estimates are proven to have the property that

the effectivity index 0 = (error estimate/true error) converges to one as the

maximum mesh size goes to zero. An adaptive mesh refinement strategy is

based on equilibriating local error indicators whose sum comprises the

.- global error estimate. Numerical results show that e is nearly one even on

coarse meshes, and that optimal meshes are created by the adaptive procedure.

The successful solution of a non linear problem-modelling flow through an

expanding duct, makes evident the robustness of the method.
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CHAPTER 1

INTRODUCTION

This paper is the second part of a two part series in which an adaptive

finite element method for convection diffusion problems is derived and analyzed.

In the first paper an upwinded finite element method was described which was

shown to yield a quasi-optimal approximation to the exact solution of the

model problem

-cu" + a(x)u' + b(x)u f in (0,1)

(1.1) u(O) = a

BIU'(1) + 62 u(1) = B.

Although quasi-optimality is mathematically important, the goal of a

numerical computation is to provide an accurate approximation to the exact

solution of a mathematical model describing some physical phenomena.

Therefore, a numerical computation should not only produce an approximate

solution, but also an estimation of its accuracy.

The effectiveness of such an error estimate can be measured by the

effectivity index

e = (error estimate/true error).

Using the upwinded finite element method described in Part I to solve (1.1),

an a posteriori estimator is found such that 0 - 1 as the maximum mesh spacing

h - h(A) - 0. An error estimator with this property is called asymptotically

exact. Computationally, the value of 1I - el is shown to be small, often less

than .2, even on coarse meshes.

.. . . .. ' '" ' "° - - " ' '- ' " : . . . .. '- ' " " 1



These estimates are derived by first considering a projection of the

true error onto a space of functions which is zero at the nodes. This pro-

jected error is shown to be close to the true error in norm. Since the

projected error is zero at the nodes it can be approximated locally. There-

fore, each interval has a local error indicator associated with it, and the

global error estimate is simply a sum of these indicators.

The error indicators lead to a procedure for adaptive mesh refinement.

It has been shown by Babukka and Rheinboldt [1], (31 that the equilibriation

of the error indicators leads to an optimal mesh. A strategy based on this

face has been developed and described in [2], [41, [5]. That strategy is

used in this paper as well.

This refinement strategy is completely automated by the computer. First,

an initial solution is obtained on an unrefined mesh. Error indicators are

calculated for each element and an error estimate is computed by summing the

indicators. If the estimate is below some prescribed tolerance, the algorithm

stops. Otherwise, a threshold value is computed and all elements having

indicators above this threshold are subdivided. The algorithm continues in

this way until either the specified tolerance is attained or computer resources

are used up. Numerical results show this algorithm to be very effective in

resolving boundary layers or other singularities in the solution.

An adaptive procedure based on a posteriori error estimates has been

developed by Reinhardt ([13], [14]) for a norm which arises from symmetrizing

the bilinear form. The method of symmetrization was first studied by Barrett

and Morton in [61 and (7]. Unfortunately, for problems of the form (1.1)

with b(x) # 0, the method described by Reinhardt requires the solution of a

full matrix equation, instead of the usual band matrix for the conventional

or upwinded methods. 2



In Chapter 2 of this paper we summarize the results from Part I. This

provides the mathematical framework for the problem. The a posteriori

estimates are derived in Chapter 3 and are proven to be asymptotically exact.

Finally, some numerical results are presented in Chapter 4. The examples

were selected in order to show the optimality of the method, the reliability

of the error estimates, and the robustness of the algorithm. The robustness

is displayed through the successful solution of a non-linear problem with a

turning point. This problem arises from a model of flow through an expanding

duct.

The asymptotic theory presented in this paper is based on the assumption

that the maximum mesh size h is small. In the adaptive mode, this is not

quaranteed. Ratios of the maximum step size to the minimum step size often

exceeded 250 in the numerical experiments of Chapter 4. This suggests that

this requirement is not necessary in practice.

Numerical results for a simple 2-D problem in which the flow is in the

direction of the x-axis have been performed (with a posteriori estimates and

adaptivity) and appear very promising. These results as well as further I-D

examples are in preparation.

p3



CHAPTEP 2

PRELIMINARY RESULTS

In this chapter we summarize the results of [191 which are needed in

this paper. The following notations are used:

H k(I), k = 0,1,..., 1 < p < is the usual Sobolev space on the

interval I = [0,1] consisting of functions

with k derivatives in Lp(I).

A = {O = X < xl' < . . < XN = 1), where N = N(A) is an arbitrarv
0N

mesh on I.

h x x andJ-  = (x for j ... , = (h + h )/2 forj J -1 j-1, j J+

j ,.... N - 1, cN = h and h =max h.
N j

* A variational setting will be presented for the problem

Lu -c u" + a(x)u' + b(x)u = f in I,

(2.1) u(O) =

" (u) - 81 u'(l) + B2 u(l)

For the operator L we assume

1
Al: a(x)C C [0,1], a(x) > a > 0,

0b(x)C C [0,11, b(x) > b

2and b is such that a + 4Eb = y > 0.

For the boundary operator F we assume

A2: B1, 2 > 0, 0I + 62 > 0.

The assumptions Al and A2 are sufficient to ensure that a maximum principle

for (2.1) holds, and the Green's function for L is bounded uniformly bv a con-

stant independently of c.

4
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We also have additional assumptions on the input data, namely,

A3 i) The source term f is of the form f = f + fl, where f C LI(I) and

N-I

f 1 E Ci6(x - x where 6 (x - xi) is the Dirac delta function
., i=1

N-i
at the meshpoint x = I . Furthermore, Z lcil K is independent

i=l

of N and f is independent of E.

ii) a is bounded independently of c. Also, if 1 # 0 then is
811

bounded independently of E and if 1= 0 then is bounded

independently of E.

A4 a(x)/ C C r+2(I) b(x)/ C cr+l ([ f 0xIC will be

specified later), and a(x) and b(x) are independent of e.

In [19] Chapter 2 it was shown that assumptions Al-A3 are sufficient to ensure

the existence of a unique solution to (2.1) which is bounded independently of

c. Assumptions Al-A4 are assumed to hold throughout this paper. Furthermore,

without loss of generality, we restrict ourselves to the case of homogeneous

essential boundary conditions, i.e. a = 0, and if 61 = 0 then 6 = 0. This

restriction is made for the theory only, and not for the numerical examples

presented. Becauise the Green's function is bounded it follows that if A3 holds

then the solution to (2.1) is bounded independently of E. The assumptions Al-A4

are assumed to hold throughout this paper.

Let L* denote the formal adjoint operator to L, i.e.,

L* = -E -- a(x) d + (b-a')(x).

dx
2  dx

The boundary operator adjoint to r is F*, where for u sufficiently smooth

4M
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E: '2 + a(l] u(l) + Eu'(l), if 6 # 0,

: uM1) if SI = 0.

We now define the spaces and bilinear form used to pose (2.1) variationally.

0
The space H 1 < p < - is defined as the completion of

p,A,

U 0 if6
H1 Ti (uC 1 ) u(0) =0, u1=0 if 0

with respect to the norm

iuj~dx + E j Iu )I p , 1 _< p <
fol j=l

(2.2) hullHo
p, A

H Ui L (i) , p =

where N = N - 1 if i = 0 and N1 = N if 6 # 0.

The space Hp0 can be easily identified with L 0 RN1
p'A ca , that is,

p
u =(d, dI ... ,dN)c HA = L 0 RNl, and

p
N11- 1/p

[i E .I ]d _ <
p j=l

(2.3) 1 Jul IHo
P,

max[i T! 'L(I.), Id 1 1 , =
L,(1

In consistency with our definition, we say u C H 0  n H1(1) if U C HI) and
A p

d= i(x.) for j = 1 ... N1 .

2 2 1The space H is defined by H = {CHI(1): v(O) = 0, v(1) = 0 if 6i 0

and vil CHq(I.), j I,..., W for 1 < q <
q.



For any v C H-, define 2 bv

N N

]' [~~L*v qdx + E tqlj(v'(x.)l~ -

(2.4) j= l  i j=1

2 ,2 = + h [lF*(v)q , q <,

max[ max IKL*v l max CjJ( KD"

_<j<N l I<j<N-"

!1

•-,(v:hN11, q =

On H x H where- + 1, 1 < p < , we define a bilinear form" p,A xq,., P _ _

p ,p q_

SBA(•) by

N f N - I !* (vv
(2.5) B (u,v) = J uL*vdx - d J(v'(x.)) + d N*(v)

j= i j-l

where J(v'(x)) = v'(x.+O) - v'(xj-O) for 1 < j < N - 1, and v'(x. + 0) =lim v' (x).

The following results were proven in 9]

Lemma 2.1. (See [191 Lemma 2.6). Let v C H2  then

B (uqv) I

Uv11 1 2 = sup A
o I uIl o

q,,A uCH 0 Mp,A

Theorem 2.2. (See [19] Theorem 2.8). If vC H, then,, H
2 henvC L (I) (Th (I) with

.9 q

(2.6) !'vl IL ) C1 llvl i2 < ct! vH2 A' 1 < q <

and

7



(2"") IIV'IIL (I) : C2q
q qRA

where C and C 2 are independent of v, q, E and A.

For the finite dimensional trial space, from which the approximation is

taken, we use S = {u C C0 ( H :uI is a polynomial of degree < r). Forr p, u I. -

the test space, two possibilities are considered. First, consider

Sr) = Span j=l .... Nil

where

00l (x), on I. and I
1, j j+l

(2.8a) L*' -

0, elsewhere,

x - = 6i~ j ,  for i,j = 1,...,N.

h. _ + n (x), on I.

(h mi} 3I,
(n)

(2.8b) _~

0, elsewhere,

(n)

, ,(X.) = 0, for 0,...,r-2, i,j =,...,N.

Let r=. max 1H ,.(x)11 and n = max n.
3 1=-l,... ,r-2 , J 1" i ) LI

The following result guarentees that the finite element approximation

(r0
uL C S obtained when S is the test space is quasi-optimal in H if n

L r L PL

is sufficiently small.

8
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1 1

Theorem 2.3 Let nbe sufficiently small and _ + - = 1. Then there exists ap q

D > 0 bounded away from zero independently of c, such that

inf sup IBA(u,v)I > D , for 1 < p <
0

v SL) u C Sr

IvJi 2 1 lullH o
Iv Hq,c,LX p,A

It is shown in [19] Chapter 4 that the functions can be found; ." ,j

explicitly such that n. < Ch.. Because these functions are of the form

(Y) + P2(y)e with a - when I is large special quadrature rules are

" needed to control the quadrature errors. In order to avoid this, the space

-S0) is projected onto

(2.9) S (k) = Span Xk}j 1, . ., N1 ; Z=-l, •• r-2

where
kX£,j = Pk ( '), 1 ( ' ) ,

i=0 i

with Pk denoting the L projection operator onto the first k + 1 Legendre

polynomials o 0.... , k on each interval I J. The following results holds

when S(k) is the test space.
a

Theorem 2.4. Let S cc be defined in (2.9) with k = 2r + 1. For v CH 2

and f C (H,,)' satisfying A3, define

0 if 1 = 0,

F (v) E <f,v> -

E 61v(1) if 6i # O,

Then the following hold: (See [19] Chapter 2 for a, and Theorems 3.3 and 5.3

for b, c, and d).

0a) There is a unique solution u C H to B (u,v) =F (v) for eachp, 9

v C H 2 A' 1 < q < ,1 +1 = 1, and uC H°

q- q,, p q

r4 9



b) There exists an ho, independent of c such that for all h h o ,

there exists a unique u C S satisfying

(l r

B (u --")F(v ) for each v S(k)

and a unique uL C Sr satisfying

B (uL ,VL) = F(vL) for each vLC S

c) Ilu - ULI IHO < C inf Ilu - Wi HO , 1 <_ p < .

p,A w C S pAr

d) IjuL - un IHO < C max h.r+2 {HIf(r+ 2 ) IIL (Ij)
p,A j

+ Ila(r+ 2 )1IL (I) + Hlb(r+l)1l, (I ) }

for 1 < p < , and r > 1.

For the computations performed the spaces S and S ( 3 ) were used as

the trial and test spaces. With these spaces, Theorem 2.4 yields

(2.10) Ilu - u 1HO < C inf lu - w I Ho + max C h3
PA wCS1  p,A j

where u is the piecewise linear finite element solution.

Numerical quadrature was performed by taking the piecewise cubic

interpolant of a(x) and piecewise quadratic interpolants of b(x) and f(x),

and then integrating exactly. Using this quadrature rule the finite element

solution UhC SI exists f,.r h sufficiently small, and the estimate (2.10)

holds with ua replaced by uh' The details of this result are omitted here but

are proven in Ei for the general case using Sr as the trial space r > 1.

i.10



CHAPTER 3

ASYMPTOTICALLY EXACT ERROR ESTIMATORS

Let

(3.1) fBp u ( d...,d) H : d. 0, i =1...,N},
%,,AN pA 1

and

2 2
(3.2) K B, v C , v(x.) = 0, j = ... ,N),

B ,q,A q ,E,A j

with 1 < p,q < w, and - + - = 1. These spaces are denoted by the subscript
p q

B to represent the "bubble"-like characteristic of functions which vanish at

each nodal point.

First, we consider an approximation to e - u - uL , where uL C S

the finite element solution obtained using the test space SL- with n

sufficiently small. Denote by Pe the solution of

(3.3) L(Pe) = L(e) = f - L(uL) in Ii.

Pe(xj1 ) = Pe(x.) = 0, j = 1,... ,N.

1
Then Pe also solves the variational problem: find Pe C Kp such that

(3.4) B (Pe,v) = B (e,v) for each vC K2

A A B,q,A' 1 < q < .

Because of assumption A4, Pe C H0  and is bounded independently of E. The

following result shows that uL + Pe is a superconvergent improvement of UL.

Lemma 3.1 Let e = u - uL and Pe be defined by (3.3) or (3.4). Assume

nis sufficiently small (independently of E). Then

le - oe < C rl jejlO . I
p,A p,A

lC II

L"1



where C is independent of c, A, and 9.

Proof: By (2.3), (2.4) and Lemma 2.1 it follovs that

IB (u',v) i
I lU1HO = sup _v 2 < p <

P' vCHq q1 , ,EH

Therefore,

(3.5) He - Pei) 0sp IBA(e-Pe,v) I

Hp.A 2 lv'IH 
2

v'H qgc,A q, cA

For a given v C H A2  let w C S( ) be such thatq , ,A' le v  5L

N (i)

(3.6) w (x) v(xj)_ 1  (x),

~(r)

where -l,j is defined by (2.8a). Clearly, w(Xj) v(x3) and hence

v - WVCKB,qA . Therefore,

(3.7) BA(e-Pe,v-wv) = 0.
(n)

Also, wv C SL implies that

(3.8) B A (e,wV) = 0.

Equations (3.6) - (3.8) imply that

(3.9) IBA(e-Pe,v)t = IBA(Pe,w )I

:"= J f (Pe)L*(w_)I < 2nIVJL I PeHL

12
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I1

Using (3. 5) and (3.9) with Theorems 2.3 and 2.2 we obtain

.le-Pejj o < CHI PeH , 1<p < .
p,A p

The desired result now follows provided 9 is sufficiently small.

As mentioned earlier n = O(h), and hence if E = IIPe iL ,then E is

an asymptotically exact estimator to Ilel 11o by Lemma 3.1. However, we seek
p,A

an estimator for e = u-u where u is the finite element solution obtained by

using S (k) as the test space.

Let Pe denote the solution to the problem: find PeC 1 such

that

B (Peav) = B (eav), for each vCK 2  1 < q < c.

Pe also solves (3.3) with e replaced by ea. Hence Pe CH.,  By the

triangle inequality we have

(3.10) lle - Pe llHO < Ilea - elIHO + jle - PelIHO
p, A p,A p,A

+ lIPe - Pe liHo
a p,

First, consider the term w = Pe - Pe . By (3.3), w solves the equation

Lw = L(ua - UL)I, in Il.

w(x- 1) = w(xj) = 0 j = 1,...,N.

It follows from the maximum principle, specifically see [19 Lemma 4.1, that

if h is sufficiently small, then

13
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12

h. 2h2
(3.11) IwI 'L(I) < C min(--,-) I(La L(l)

J"- -

On I.,J

L(UL-U ) = -E(u-U)" + a(x)(u -u )' + b(x)(u -u

L tL a L a

and hence by the local inverse theorem (since uL-ua C S ), we have
r

(3.12) IL(uL-U I <([.-u- + 1h + 1]11 uL- u It (IL ).L- Ld I (I ) -- h.

Combining (3.11), (3.12), and Theorem 2 .4d we obtain

a hej _r+2

(3.13) I cee PeL < C maxh

where C depends on q(x), b(x), and f(x), but is independent of c, and h.

Beginning with (3.10), and applying Theorem 2.4, Lemma 3.1, and

inequality (3.13), we obtain the following result.

Theorem 3.2. Let e = u - u , where u is the finite element solution

obtained when using S (k ) with k = 2r + 1, as the test space. Let Pe
a a

be the projection of e into K1 defined by
aL B,p,A

B (Pe ,v) = B A(e ,v) for each v CK 2  1 < q <

Then by assumption A.3, Pe C H0  and

Pe.or+ for 1 < p < .lie a - Pe a] 1iO < Cl I J e (111H
o  + C2 max hj, fo 1 _

p,A p,A j

If a lower bound on the error of the type

l"iChr+l
(3.14) lie I > Ch

p,A

14



is available, where C can be chosen independently of c and A, then it

follows from Theorem 3.2 that

IlPe nII o lie -Pe I IH C
Ii T P 1 < e 0 A < Cr +Ch
::i Ile I o e 2

SpA

Since n < Ch, it follows that E = HPellHO is an asymptotically exact
a p,A

error estimator.

In order to justify (3.14), it suffices, for example, to suppose that

there is an interval I C I for which
0 O

u C C() but u I ),
0 r 0

and there exists a constant C > 0 such that for all meshes A in some class

min{h. I. C I } > Ch(A).

J J - 0 -

For further details see [12]. In practice these conditions are not very

demanding, and no restrictions in the algorithm need be imposed.

We must now determine a way to compute IlPell H0 = E.

ps, A

This value E need not be computed exactly (in general this is not possible),

but it could be approximated by some value EA, provided that EA is also an

asymptotically exact estimator.

Let w Pe Then w solves

-cw" + aw' + bw = 0 on

w(xjl) = w(xj) = 0,

where p m f - Lu is the residue. If we rescale this problem to I = [0,1],

[1



using the notation g(y) = g(xj_ 1 + hiy) for y C [0,1], and dropping the

index j, the function w(y) solves

(3.15) -B W" + 71 + bi = in I,
2

;, (l) = 0.

Consider the case when r = 1, i.e., linear trial functions. Let A

be the solution to

a
(3.16) Lh(wA) + A " = I in I,h AA-2-Aw A

h

- (O) = 1A(1) = 0,AA

where a = &(M), and cl is the linear interpolant of . The function A(y)

is calculated explicitly in (3.31). Assume that h'PILAI L(1) = IiwAIL D(I )

= tj can also be calculated exactly. The value T. will be used as a local error

indicator and the estimator E is calculated by
A

In order to prove that E is an asymptotically exact estimator the

A

following results are needed.

Lemma 3.3 The Green's functions Gh(xly) and Gh(xIy) for the operators Lh and Lh

are positive and satisfy the following inequalities:

(3.17) Gh(xly) < Ch(l-e- h/E)/ , for all x,y C [0.1],

16
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-a

-alh/c

(3.18) Gh(xly) < h(l-e )/a1 ,  for all x,y C [0,1],

and

-a h/4c
1

(3.19) Gh(xly) > yh(l-e )/4al, for 0 < y < x,

1 3
and x < < ,

where C is independent of c and h, Y = (a2  + 4Eb) 1 2 a = a(1), and
1 1

b = min b(y).

Proof: Inequalities (3.17) and (3.18) follow directly from rescaling the

bound on the Green function established in [19], in proof of Theorem 2.5. For

y in (O,x), Gh (xiy) satisfies

a
LhGh(xIY) h2 (ah) h(ah)y

with boundary conditions

Gh(xjO) 0, and Gh(XIX) = g(x).

where

hg(x) -- [2[Cehal(t-x)/cdt] [fl ehalt/Edt /0 ehalt/Edt]

For x C g (x) 1 [ - ehal/4E]

. -hal/4F-

Let z(y) hy [1 - e ]. Then
4a1

L z(y) < 0
h

4 z(O) = 0, and

• z(X) g (x).
17
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1 3
From the maximtu principle it follows that Gh(xly) > z(y) if - < x < -- and

h 4 an

0 < y < x.

Theorem 3.4 Let i and A be as defined in (3.15) and (3.16), respectively.
A

Assume that the approximate solution u is piecewise linear, i.e., r = 1.

Then

1w - 'WA[[L (I) ClhjIOA' L (1) + C2h
P P

Proof: Since our attention will always be focused on the rescaled functions

on the interval I = [0,1] the "tilda" notation is dropped for this proof. For

a function g(y) on I we use the notation go = g(0+ ) and g = g(l), and g is

the linear interpolant of g, i.e. gl(y) = go + Y(gl-go). To avoid confusion

with fo(x) (see Assumption A3) we write /(x) = f (x) in this proof.
0 0

Let z = w - wA. Then z solves

(a(y)-a I)" z z" + a-- + bz = p - p h w b(y)w in I,
h 2 h I h A A'

z(O) = z(l) = 0.

Write z = zA + z B + zC where

(3.20) LhzA = - z A(0) zA(1) = 0,

(a-al)
(3.21) L w Z(0) z (1) 0,h B  AB B

and

(3.22) LhzC = -bwA, ZC(0) = z(1) = 0.

18



First, Consider z (y). By assumption A4, a(x), b(x), and A(x) are
A

piecewise smooth. Also u (x) is piecewise linear, and bounded (Theorem 2.4).

Therefore,

(3.23) (p-pi)(y) h 2[KA(y) + u K (y)]

where KA(Y) and KB(y) are bounded independently of E and h. By (3.20) and

(3.23)

(3.24) zAW = h [KA(Y) + u'KB(Y)] Gh(Xly)dy.

Similarly, we may write

(3.25) pI(y) = p + Y(P - P) o + + '
0 1 0 0 Ah-Y C,

where yA and YB are independent of c and h. From (3.16) and (3.25) we have

(3.26) WA(X) = f + hYu')BU (x y)dy

0

+f hy ,ACh(xiy)dy

We now consider two separate cases.

Case 1. I o - boU( l)(x _> ua1U . In this case u' is bounded, and hence,

o J-i 2 o CL

from (3.24) and Lemma 3.3,

(3.27) izA(x)l < Ch3

Case 2. 13' b u (x j <  1Ila u'l. In this case
o j-1 2 o

4~~~ p 0 =I~-bu (x. a~ - l a I -4IlaoU00i 10 0 ao bu(j-1) 0 aoc - 2ao a"

This is further broken down into two subcases where either lu'l < 1 or

lu'l > 1. If lu'l < 1 we have (3.27) again. Tf lu'l > 1, (3.26), (3.19),

(3.23) and (3.17) imply that for h sufficiently small,

19
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A III, C (e- 3 1 h!4c) u' h

p

and

(3.28) I[ZA[j L C (1-eYh/ )l' h3

p

Thus,

IIZAIIL < Ch21WAIIL

p p

When considering the term z B9 since a is smooth,

a -a(y)
C (y)(l - y)w

h A a

where C (y) is bounded independently of E and h. Let t 1 - y and definea

v(t) by

v(t) = twl(l-t) + wA(1-t)

Then v(O) 0 and v solves

aI- 2 v'(t) h v(t) = q(t)

h h
a1

where q(t) =-tp I(1-t) - --- WA('-t)

Therefore,

_vh (1 -e-alh/E)jqj and
VIIL a1

I!(al-a(Y)) wA'[ I < -l1eahE °Il+ C WA L

h WA L 1 + C1 ' 1 WA'IL

From this, (3.21) and (3.18),

20
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I zB (x)I Ch 2 (l-e-alh/ )IlIl + ChIlwAl L

1 1L r l I L

We must now show that either 1 c 1 < C h-1 1WA L /(l e-alh/c) or < C 1h.

This can be shown by arguments analogous to those used discussing IZ~j i The
p

same two cases are distinguished as before. In addition Case 1 is split into

two subcases: o  > 21. I- o0 and 1,o 1 < 21el-P o l.

Therefore,

(3.29) I ZBjlL < ClhI iwA! L + C2h
3

p

From (3.22) and (3.18) we have

(3.30) IIZCH[L < ChllwAill
p

The theorem follows from the fact that w-wA = zA + zB + z and inequalities

(3.27)- (3.30).

Corollary 3.5. Suppose that (3.14) holds. Let

EA

max T. p
J

where r. =hl/PewA 1L (1) with w A defined in (3.16). Then EA is an

asymptotically exact estimator to le lIHo for 1 < p < -, when r 1.

p,A

Proof: This result follows from the triangle inequality and Theorems 3.2 and

3.4. Finally, we remark that Corollary 3.5 also holds when the effects of

quadrature are included. For details, again see [18].

21



The problem of explicitly calculating HWAI[L (I) still remains. From

P

(3.16) we have

h. alV/s:

(3.31) wA(y) = A + Be 
j  + Cy" + D Y

where

C = h.(R I - R )/2a
0 1

D = hjR/a + (R - R)a 2

0 ~ 1 o 1

h a/ 2

A = - (C + D)/(l-e j  )a1

B= -A

Asbefore, a1 = A() a(x.), g = R(O) = R(x ) =(x+ ) -.aUl bo

and R1 = R(l) = R(x.)

When p = 2M, where M is a positive integer, T. = hjllWA1lL (I) can be

computed exactly. However, all of the numerical results presented in the next

chapter are performed with p = 1. We do not know a-priori if WA will change

AAsign or not, and if it does, the zero of WA cannot be determined explicitly.

Therefore, if WA changes sign in I we cannot compute 1IWAI L exactly.

Suppose that we let

* I-0
J = j Ad

which can be easily calculated from (3.31). The next theorem shows that with

certain assumptions on the exact solution u, if

N

EA = Z T.

j=l

then EA is an asymptotically exact estimator to INIHO
A, 1

22



Theorem 3.6. Let u be the exact solution and suppose that u" does not change

sign on any interval I., j = 1,...,N. Also assume that u is su(a that (3.14)
JN

holds for r 1. Then, if I. = / and E E T., then is an

j j=l A

asymptotically exact estimator to Ihel H° , where e, = u - u,.

Proof. By the triangle inequality, and Theorems 3.2 and 3.4 it follows that

(3.32) Ile WAl le, - Pe 01 + lPe - WAIH 0
HA HI,A l,A

< C-1hjHej H o + C2h3

1, A

Also, since wA(Xj ) = 0, j = 0,...,N
Aj

N

(3.33) lIe - WAIlHO = e, - WAh 1L (I) + E
1, j=l

Inequality (3.32), and (3.33) imply that

N 3
(3.34) E le (xj)lP < CIh lej o + C2 hj j j--1 0  +

J =- H I , ' A

Let e* - e - e 1 I where e is the linear interpolant of e . Then,
-V

N

(3.35) lie cc eJ 1 l0 1 I -,11 , 2 Z I e ,(xj)P
H01' Hl1A j-1 -

< ClIh [ le (111l o  + C2 h 3

1,,

This shows that I e*I L is an asymptotically exact estimator for Ile~j HO
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-i . . . . . . -. .. .. . • - . . . . . . ..

Since e* does not change concavity on I, and e*(x_) = e*(x.) = 0,
a Ja]-

"L (I
1J

So

ILI *[ = el l L1 (I) = WI wAdY

]= f' * - jl WA

x fe -ww
j=l

* e*

<- lle WAlILI) < le - WAIIL + Ilie

<-C1hl l + C2 h ,<. Clel [edit

HIA

where the last inequality followed from (3.32) and (3.35).

The assumption u" doesn't change sign locally, if violated, will in

general not disrupt the effectivity of the error estimator E*. If u" does

change sign in some interval I. then I. cannot lie within the boundary layer

or interior layer of the solution u. This is because in the boundary layer

region, u"1 > CE- , where C is independent of E (see eg. [101). Suppose

that u is smooth in this interval and that u" is bounded in I independently of

E. Then, since u" vanishes at some point in Ii.

le W) =-lu(x)- u (x) < Ch2 Iu( )I < Ch for x C I
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The value [He*1j is an asymtotically exact estimator by Theorem 3.6, and

lA

also, by assumption (3.14),

N
E Ie L > Ch2.

j=l 1

I n 4
Since I1eljjLl(j) < Ch,, the error on this interval is one higher order than

can be expected by the best approximation to u by a linear function on I..

Thus, in general, the error in this interval is negligible in its contribution

to the total error or an asymptotically exact error estimate. Even with this

consideration, the following precautionary measure is taken just in case this

assumption is violated.

Let

fo 1Q()= hjLf wA(t)dt - . WAftt)dt I

By (3.31) WA can have at most one zero in the open interval (0,1). If () = 0

and h C (0,1), then Q(E) = T.. Also note that Q(l) = r.. Letand CI(,i),teIQ- [IL

h" .N A[Q max QW.), where
i=l,. 4

+ = 1/3, = 1/2
1 2

I E 3 =2/3, and 4 =f 1.

Then jI' 1 Q is a norm over the space of functions WA defined in (3.31).

Since this space is only two dimensional the norms Q and j]. are

equivalent on this space. Therefore, if Tj' hj1 WA[ [ , then C1 <

[t < C2 , and furthermore the constants C and C2 are independent of E

122
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7

and h. Thus, even if the assumption on u" is violated, we can still

quarantee that the estimator E' T. satisfies
A

' El

A
-- A 2'c1 < TIH 1lN

with C and C2 independent of E, and A. For the computations presented in

the following chapter, T' = h. I was used as the error indicator for I..
j. AJQ J

In conclusion of this chapter we state a superconvergence result for the

errors at the nodal points.

Corollary 3.7: (Nodal superconvergence)

The nodal errors e (x.) satisfy

N ](j p  1/p3

[ ele(x < ClhIe II'HO + C .h 1 < p .
jl CL ' 0

Proof: For p 1 this is (3.34). For p >1, the result follows by appropriately

modifying (3.32) and (3.33).
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CHAPTER 4

NUMERICAL RESULTS

As mentioned in the introduction, the equilibriation of the error

indicators T leads to an optimal mesh. An effective algorithm for performing
ij

this task has been developed by Babuska and Rheinboldt,andimplemented in FEARS

(Finite Element Adaptive Research Solver) (12], [4], [11], [ 5]). This algorithm

makes a prediction on the error indicators after a future subdivision. The

predictions are calculated by assuming that the indicator of an element will decrease

by essentially the same ratio as the last time it was subdivided. The maximum

predicted error is then used as the threshold value for subdivision--all

elements with indicators above the threshold are refined. The algorithm

continues to solve and then refine until the desired accuracy is attained.

Example 1 is a typical linear convection diffusion equation in which

all assumptions Al-A4 hold. A detailed description of the effectivity index

e and the rates of convergence for both uniform and adaptive meshes is

presented. Example 2 is a linear problem with a turning point which violates

assumption Al. Nevertheless, this problem was succesfully solved by the

algorithm. Example 3 is a non-linear turning point problem. The robustness of

the method is best displayed through the results obtained for this problem. In

all examples linear elements were used for the trial space.

Example 1: Consider the problem:

(4.1) -cu" + u' + (i + E)u = -B-Ea + (1 + E)(a - )x in (0,1)

u(O) = u() = 0

where a = 1 + e and 6 = 1 + e The exact solution to this problem

is

27



.- 4

(l+F-)(x-1)/c -x
u(x) e + e -I, + (I - )×.

This problem was studied by Kellogg and Han [9] , with the use of enriched

spaces. We remark that the results presented for this problem were typical

for all linear problems satisfying A1-A4.

The adaptive process of computing the error indicators, refining, and

then resolving, was initiated on a uniform mesh of four elements. The results

of each solution pass of the iteration for c = .01 are summarized in Table 1.

TABLE 1

Summary of results for the adaptive mesh
refinement procedure used on (4.1) with E = .01.

NUMBER OF MAXIMUM RELATIVE EFFECTIVITY
ELEMENTS NODAL ERROR ERROR IN H' S1,A

4 2.70E-4 1.19E-1 1.0877

5 2.62E-4 5.15E-2 1.0442

6 2.62E-4 2.27E-2 1.0204

7 2.62E-4 9.53E-3 1.0085

8 2.62E-4 4.99E-3 1.0067

12 2.97E-5 1.72E-3 1.0052

23 3.91E-6 4.68E-4 1.0034

35 2.05E-6 2.11E-4 1.0043

55 2.56E-7 7.65E-5 1.0009

102 1.77E-8 2.21E-5 1.0005

201 1.18E-9 5.69E-6 1.0003

One of the most important aspects of these computations is the

effectivity index 0 of the error estimate. Recall 9 = E/IleII o , where
1,
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E is the computed error estimate and e = u - uh is the exact error. The values

as listed in Table 1 reveal that the error estimate at worst is within 8.8%

of the true error, and this percentage decreases rapidly as the mesh is refined.

Graphs of the effectivity index are presented in Figures 1 and 2 as a

function of the number of elements. Figure 1 displays the values of 0 using

uniform meshes for c in the range 10 to 1. Again, notice the improvement

in e as the number of elements increases. The rate of decrease of 1l-el on

4(1  o -2 -1
uniform meshes is O(N - I ) for c < 10 - 4 , and O(N ) for c > 10 . Furthermore,

the fact that the graphs of 0 = e (N) are nearly superimposed for e < 10
- 3

indicates that 0 (c,N) converges as c - 0. The values e (0 +,N) provide an

upper bound for OA(E,N) on uniform meshes A.

Figure 2 compares the effectivities when c 10-6 using both uniform and

adaptively constructed meshes. With adaptive meshes, the graph of 0 A(E,N)

is no longer smooth, but it still lies beneath the graph of 0 for uniform

meshes. This behavior was typical for all values of E tested. The improvement

of the effectivities using adaptive meshes was even more profound on other

problems (see Example 2 or []).

Next, we examine the rates of convergence attained in the H, norm.
lA

If N = N(A) is the number of degrees of freedom in the mesh, we will assume

that the error EN = I ,elIHo has the form EN = CN- Y . The rate y is assumed

to depend on both c and R, i.e., y = y(e,R), where R is the relative error

HUH Figure 3 shows the graphs of y(c,.l), y(E,.Ol) and y(E,.00 25 ),

lA

when uniform meshes are used. For R < .01 the graphs begin with a value of

two and then decrease to one (or nearly one), as E 4 0. This transition from

two to one is delayed, as smaller relative errors are considered. The optimal
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rates of convergence (N if I/N < c, and N-  if I/N >1 F) for uniform meshes

are reflected by these graphs.

Figure 4 shows the graphs of y(C, 10-2), Y(c, 10-3), and y(c, 10-5), when

adaptively constructed meshes are employed. Notice that these graphs always

lie above or on the value Y = 2, which implies that the rates of convergence

observed are always O(N- 2). It is also important to note that when using

adaptive meshes, the rate of convergence is unharmed as E - 0.

The rates of convergence using adaptive and uniform meshesfor c = 1, .01.

and .0001, can also be seen from the slopes of the graphs of the relative 
H 0

errors, displayed in Figure 5. By extrapolating the graph of the error for

e = .0001 using uniform meshes, it can be seen that in order to obtain the

same accuracy achieved with an adaptive mesh of 149 elements, approximately

17,000 uniform elements would be required. For smaller values of C this effect

is even more pronounced.

The maximum nodal errors for this problem are displayed in Figure 6.

In each case, using both uniform and adaptively constructed meshes for C = 1.0,

and .0001, the superconvergent rate of O(N - 3 ) is attained. Notice that when

c = .0001, the maximum nodal errors are smaller for uniform meshes than for

adaptive meshes. This unexpected result does not contradict the theory - the

adaptivity optimizes the mesh based on the errors in H without regard to
1,A

the nodal errors.

To describe the distribution of the mesh points, we use the mesh grading

function WA(x). The function A(x) is the piecewise linear function on the

mesh with the property

4(xj) j = 0, .,N.

For example, on a uniform mesh, A(X) x. The derivative of 2A(x) is a measure
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of the density of the mesh points. The mesh points will be heavily concentrated

in regions where (x) increases rapidly.

Figure 7 shows the graph of the mesh grading function when c = .01, for

an adaptively constructed mesh of 201 elements. Note the heavy refinement in

the boundary layer region (near x = 1). The remainder of the nodal points

were distributed nearly uniformly throughout the rest of the interval. This

reflects the fact that u is smooth (although not linear) outside of the

boundary layer.

Example 2. Consider the following turning point problem:

2
(4.2) -cu" - XU' = E7 cos(rx) - (7x)sin(rx) on (-1,1),

u(-l) = -2, u(1) = 0.

The solution to this problem is

u(x) = cos(rx) + erf(x/v125)/erf(i//2),

which has an interior layer at x = 0.

Although this equation violates assumption Al at x = 0, the results

presented here reveal the robustness of-the algorithm and suggest that the

crucial theoretical results also hold for this type of problem.

Figure 8 displays the graphs of the errors in the norm fore = .01
1,A

and .0001, using both uniform and adaptive meshes. The optimal rate of

convergence (O(N -2)), is quickly realized in all cases. The errors using

adaptive meshes are smaller than with uniform meshes, particularly when

E = .0001.

The graphs of the maximum nodal errors for = .0001 are presented in

Figure 9. These graphs indicate that nodal superconvergence occurs even in

the presence of a turning point, provided adaptive meshes are used.

Figure 10 displays the graphs of the effectivity indices, eA(E,N), for

c - .01, and .0001 using both uniform and adaptive meshes. Even on this

turning point problem, we have good effectivity ind1ces-at worst e = 1.72.



i

Example 3: Consider one-dimensional flow in a duct of variable cross

sectional area. A one equation model for steady non-heat conducting,

viscous flow has been developed by Shubin and Stephens in [16] and [17].

This model is governed by the equation

(4.3) -cu + r + G 0 on (O,L)

where HA 2

G = -(y-1)C(-u - ) A'/A +
u 2

+ y(Ju + E/u)A'/A 2,

r Y (6u + E/u),

D - cA', D = (y+l)C/2y, and

E = (y-1)CH/y.

y.= 1.4 is the ratio of specific heats,

C = .68471 and H = 3.5 are constants,

A(x) = 1.398 + .347 tanh (.8 x - 4) is the

cross sectional area,

c is the viscosity coefficient assumed to

be constant, and

u(x) is the velocity.

In the inviscid case (c = 0), the velocity is sonic if u = a = (E/D) = 1.0801,

supersonic if u>a and subsonic if u<a. When the viscous problem is solved

with boundary conditions such that u(O)>a and u(L)<a an interior layer arises.

In the limiting case as c-0, this layer becomes a shock. The boundary conditions

used are u(O) = 1.299 and u(L) .505 with L = 10.

a We solve the nonlinear problem by iterating on a linearization of the

equation. This procedure is described in [8] and referred to as a variant of

Newton-Kantorovich method. In general, consider the nonlinear problem
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-cu" + F(x,u,u') = 0 in I [XoXN ]

u(x) , u(xN) =

The linearized boundary value problem for the Newton-Kantorovich iteration is

(4.4) -Cu1 + F , (x'u ,u')u' + F (xgus u')um~u m m in+1 u unmm+

F (x,u mu)u + F (x,u ,u')u' - F(x,um,um) in I,
u mm m u mm m

U m+l (x ) 0

u m+1 N

The aim was now to use the continuation method with respect to

decreasing values of c together with intermittent mesh refinements based

on the linearized equation (4.4). This procedure was started using a large

value of c, a uniform mesh, and a linear solution u which satisfied the

boundary conditions. For sufficiently large E (c = .1), the iterative process

converged quickly. Using the continuation method, the value of c would be

decreased by a factor of about two. This would lead to convergence provided

the mesh was sufficiently refined and the approximation was sufficiently

close to the exact solution for the current c. In this manner the adaptive

method not only found accurate solutions and error estimates, but also

significantly increased the efficiency of the continuations used.

The computed solutions for c = .1, .01, and .001 are graphed in Figure 11.

The exact inviscid solution, which has a shock at x = 4.816 is practically

indistinguishable from the computed viscous solution with c .001. The

effectivity indices and relative errors were also calculated with respect to

. the exact viscous solutions and are shown in Table 2.

.3
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TABLE 2

The effectivitv Indices and relative errors for

the duct flow problem

S EFFECTIVITY INDEX RELATIVE ERROR

.1 .78 .OE-2

.01 .83 .20E-3

.001 .77 .33E-4

The exact solutions were approximated by a computed solution on a sufficiently

fine mesh. The mesh grading function for the c = .001 solution with 84 elements

is displayed in Figure 12.

The interior layer of the solution contains a turning point of the

linearized equation (4.4). The turning point xt occurs when um(Xt) = (E/D(xt))
tm t t

in which case FUI(x ,U (x ),u'(x)) 0. If this point occured in an interior
ut M t'm t

region of an element, no upwinding was performed there. If F was nearlyU0

zero at one endpoint of an element and sufficiently large at the other endpoint,

then upwinding was performed based on the larger value. This corresponds to

the "switching schemes" derived in [161 and [17].
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